About 400 results
Open links in new tab
  1. seaborn.heatmap — seaborn 0.13.2 documentation

    This is an Axes-level function and will draw the heatmap into the currently-active Axes if none is provided to the ax argument. Part of this Axes space will be taken and used to plot a …

  2. Scatterplot heatmap — seaborn 0.13.2 documentation

    Scatterplot heatmap # seaborn components used: set_theme(), load_dataset(), relplot()

  3. Choosing color palettes — seaborn 0.13.2 documentation

    Seaborn makes it easy to use colors that are well-suited to the characteristics of your data and your visualization goals. This chapter discusses both the general principles that should guide …

  4. Annotated heatmaps — seaborn 0.13.2 documentation

    Annotated heatmaps # seaborn components used: set_theme(), load_dataset(), heatmap()

  5. Annotated heatmaps — seaborn 0.10.1 documentation

    Annotated heatmaps ¶ Python source code: [download source: heatmap_annotation.py]

  6. seaborn.clustermap — seaborn 0.13.2 documentation

    Plot a matrix dataset as a hierarchically-clustered heatmap. This function requires scipy to be available. Parameters: data2D array-like Rectangular data for clustering. Cannot contain NAs. …

  7. seaborn: statistical data visualization — seaborn 0.13.2 …

    Seaborn is a Python data visualization library based on matplotlib. It provides a high-level interface for drawing attractive and informative statistical graphics.

  8. Plotting a diagonal correlation matrix — seaborn 0.13.2 …

    Plotting a diagonal correlation matrix # seaborn components used: set_theme(), diverging_palette(), heatmap()

  9. seaborn.barplot — seaborn 0.13.2 documentation

    log_scalebool or number, or pair of bools or numbers Set axis scale (s) to log. A single value sets the data axis for any numeric axes in the plot. A pair of values sets each axis independently. …

  10. seaborn.FacetGrid — seaborn 0.13.2 documentation

    These examples use seaborn functions to demonstrate some of the advanced features of the class, but in most cases you will want to use figue-level functions (e.g. displot(), relplot()) to …